# WAVEFORM GENERATION USING SOD PIN

## BY SUBATHRA S

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/in/deed.en or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

### WAVEFORM GENERATION USING SOD PIN

#### OBJECTIVE

Generating the square or rectangular waveform using SOD pin of 8085 Microprocessor kit.

#### **APPARATUS REQUIRED**

- 8085 Microprocessor kit (VI MICRO SYSTEMS)
- Power Supply (+5v)
- CRO

#### ALGORITHM

- 1. Get the data in accumulator and transferred in to any one of the register.
- OR the accumulator content with 40<sub>H</sub> immediately, in order to keep SDE bit always high.
- 3. By using SIM instruction data was transferred through SOD pin.
- 4. The data was right shifted once for continuous waveform.

#### SET INTERRUPT MASKS INSTRUCTION

| D <sub>7</sub>       | D <sub>6</sub> | <b>D</b> <sub>5</sub> | D <sub>4</sub> | D <sub>3</sub> | D <sub>2</sub> | D <sub>1</sub> | D <sub>0</sub> |
|----------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|
| SOD                  | SDE            | х                     | R7.5           | MSE            | M7.5           | M6.5           | M5.5           |
| Serial               | Serial         | Ignored               | Reset          | Mask           | RST7.5         | RST 6.5        | RST 5.5        |
| O/P                  | Data           |                       | RST7.5         | Set            | Mask           | Mask           | Mask           |
| Data                 | Enable         |                       | Flip           | Enable         |                |                |                |
| Ignored              | 0-disable      |                       | flop           | 0-bits 0       |                |                |                |
| If D <sub>6</sub> =0 | 1-enable       |                       | 0-not          | to 2           |                |                |                |
|                      |                |                       | reset          | Ignored        |                |                |                |
|                      |                |                       | 1-             | 1-mask         |                |                |                |
|                      |                |                       | reset          | is set         |                |                |                |

#### ASSEMBLY LANGUAGE PROGRAM

| ADDRESS | LABEL | MNEMONICS               | OPCODE/<br>OPERAND | COMMENT                                                                              |  |  |
|---------|-------|-------------------------|--------------------|--------------------------------------------------------------------------------------|--|--|
| 4300    |       | LXI H,4100 <sub>H</sub> | 21 00 41           | Input data is loaded in to                                                           |  |  |
|         |       |                         |                    | memory.                                                                              |  |  |
| 4303    | YY    | MOV A,M                 | 7E                 | Memory content is moved to accumulator.                                              |  |  |
| 4304    |       | MVI C,08 <sub>H</sub>   | 0E 08              | Initialize the no of bits                                                            |  |  |
| 4306    |       | MOV B,A                 | 47                 | Accumulator content is moved to B register                                           |  |  |
| 4307    |       | ORI 40 <sub>H</sub>     | F6 40              | Check the SDE bit by<br>ORing the accumulator<br>content with <b>40</b> <sub>H</sub> |  |  |
| 4309    |       | SIM                     | 30                 | Set interrupt mask.                                                                  |  |  |
| 430A    |       | CALL DELAY              | CD 16 43           | Call delay subprogram.                                                               |  |  |
| 430D    |       | MOV A,B                 | 78                 | Move B register content to accumulator                                               |  |  |
| 430E    |       | RAL 17 Rotate the bi    |                    | Rotate the bit left                                                                  |  |  |
| 430F    |       | DCR C                   | 0D                 | Decrement the no of bits                                                             |  |  |
| 4310    |       | JNZ XX C2 06 43         |                    | Jump if not zero to label                                                            |  |  |

|      |       |                       |          | XX.                                         |  |
|------|-------|-----------------------|----------|---------------------------------------------|--|
| 4313 |       | JMP YY                | C3 03 43 | Repeat the process.                         |  |
|      |       |                       |          |                                             |  |
| 4316 | DELAY | MVI D,FF <sub>H</sub> | 16 FF    | Move <b>FF<sub>H</sub></b> in to D register |  |
| 4318 | ww    | DCR D                 | 15       | Decrement D register<br>content             |  |
| 4319 |       | JNZ WW                | C2 18 43 | Jump if not zero to label WW.               |  |
| 431C |       | RET                   | C9       | Return to main program                      |  |

#### **EXECUTION**

Input =  $\mathsf{EE}_{\mathsf{H}}$ 

 $\begin{array}{l} \textbf{Output} \\ \text{Amplitude } = 2^{*}2 = 4 \text{V} \\ \text{T}_{\text{ON}} = 3.6 \text{ms} \\ \text{T}_{\text{OFF}} = 1.2 \text{ms} \end{array}$ 

GRAPH



#### REFERENCE

- 1. Ramesh S.Gaonkar, Microprocessor Architecture, Programming, and Applications, Fourth Edition, Penram International Publishing (India), 2000.
- S.Subathra, "Programming in 8085 Microprocessor and its applications An Innovative Analysis", Technical Report, Adhiparashakthi Engineering College, Melmaruvathur, March 2003