TRAFFIC LIGHT CONTROLLER

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/in/deed.en or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

TRAFFIC LIGHT CONTROLLER

OBJECTIVE

To write an assembly language program in 8085 to interface traffic light controller with 8085 Microprocessor trainer kit and simulating the sequence of traffic light states.

APPARATUS REQUIRED

- 8085 Microprocessor trainer kit.
- Traffic light controller.
- Power Supply.
- Flat Ribbon Cable.

DESCRIPTION

Combination of Red, Amber and Green LEDs are provided to indicate Halt, Wait and Go states for vehicles. Combination of Red and Green LEDs are provided for pedestrian crossing. 36 LEDs are arranged in the form of an intersection. At the left corner of each road, a group of 5 LEDs (Red, Amber and Green) are arranged in the form of a T-section to control the traffic of that road. Each road is named as North N, South S, East E and West W.

 $L_1,L_{10},\,L_{19}\,$ and L_{28} (Red) are for stop signal for the vehicles on the road N,S,W and E respectively.

 L_2,L_{11},L_{20} and L_{29} (Amber) indicate wait state for the vehicles on the road N,S,E and W respectively.

 L_3, L_4 and L_5 (Green) are for left, straight and right turn for the vehicles on the road S.

Similarly L_{12} - L_{13} - L_{14} , L_{23} - L_{22} - L_{21} and L_{32} - L_{31} - L_{30} simulates same function for the roads E, N & W respectively. A total of 16 LEDs (2 Red & 2 Green at each road) are provided for pedestrian crossing. L_7 - L_9 , L_{16} - L_{18} , L_{25} - L_{27} & L_{34} - L_{36} (Green) when on allows pedestrians to cross and L_6 - L_8 , L_{15} - L_{17} , L_{24} - L_{26} & L_{33} - L_{35} (Red) when on alarms the pedestrians to wait.

To minimize the hardware pedestrians indicator LEDs (both Green and Red) are connected to some port lines (PC $_4$ to PC $_7$) with Red inverted. Red LED's L $_{10}$ and L $_{28}$ are connected to port lines PC $_2$ to PC $_3$ while L $_1$ and L $_{19}$ are connected to lines PC $_0$ and PC $_1$ after inversion. All other LEDs (Amber and Green) are connected to Port A and port B.

INSTALLATION PROCEDURE

SDA 85M to NIFC 11 interface connection details:

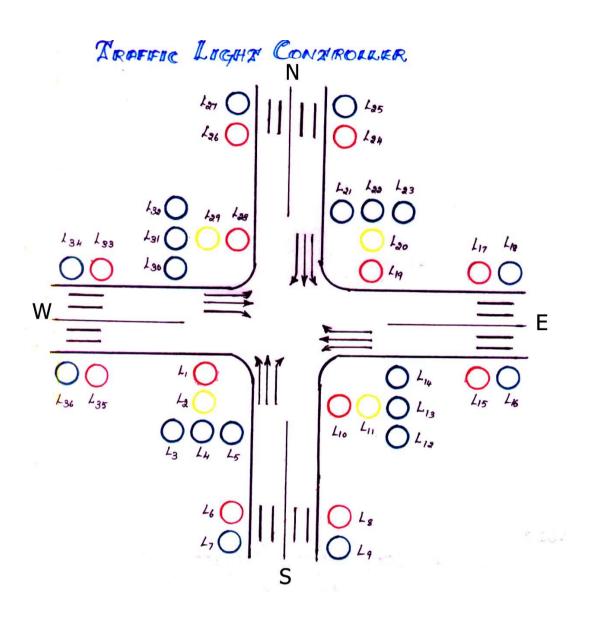
1.Connect p3 on 85M to the connector C1 on the interface using a 26 core FRC. Care should be taken such that, pin1 of P3 on the kit coincides with pin1 of the cable [Observe the notch on the cable connector]

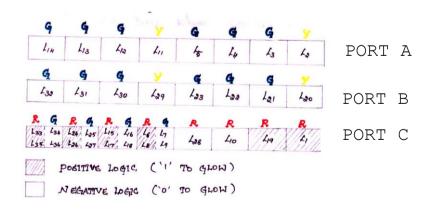
2.Power connection:

Connect +5v,GND to the interface. Color codes of power connection on the interface

+5v - Orange, Blue, White GND - Black.

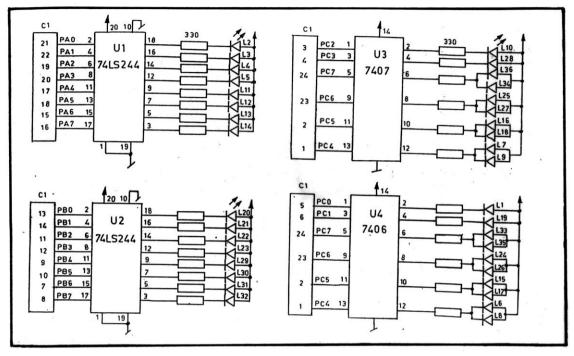
3.Enter the Program.


4. Execute the program,


Go <Starting address> <EXE>

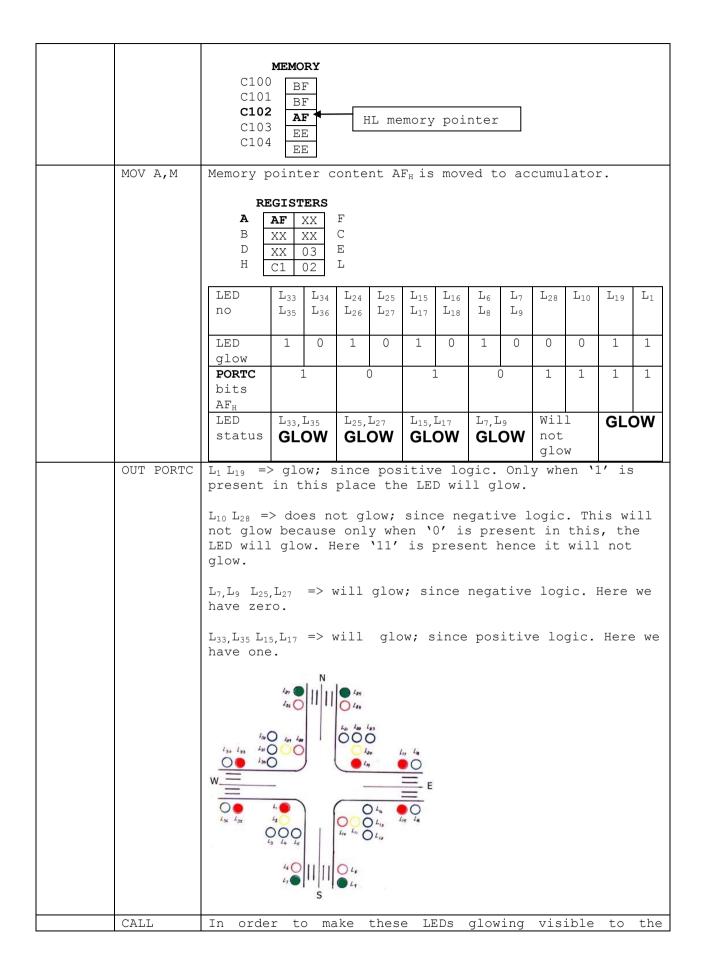
The LEDs on the interface glow according to certain sequence.

ASSEMBLY LANGUAGE PROGRAM


ADDRESS	LABEL	MNEMONICS	OPCODE/OPERAND
C000		MVI A,80 _H	3E 80
C002		OUT CWR	D3 DB
C004	REPEAT	MVI E,03 _H	06 03
C006		LXI H,C100 _H	21 00 C1
C009	NEXTSTAT	MOV A,M	7E
COOA		OUT PORTA	D3 D8
COOC		INX H	23
COOD		MOV A,M	7E
C00E		OUT PORTB	D3 D9
C010		INX H	23
C011		MOV A,M	7E
C012		OUT PORTC	D3 DA
C014		CALL DELAY	CD 1F CO
C017		INX H	23
C018		DCR E	05
C019		JNZ NEXTSTAT	C2 09 C0
C01C		JMP REPEAT	C3 04 C0
C01F	DELAY	LXI D,3000 _H	11 00 30
C022	L2	MVI C,FF _H	OE FF
C024	L1	DCR C	0 D
C025		JNZ L1	C2 24 C0
C028		DCX D	1B
C029		MOV A,D	7A
C02A		ORA E	В3
C02B		JNZ L2	C2 22 C0
C02E		RET	C9

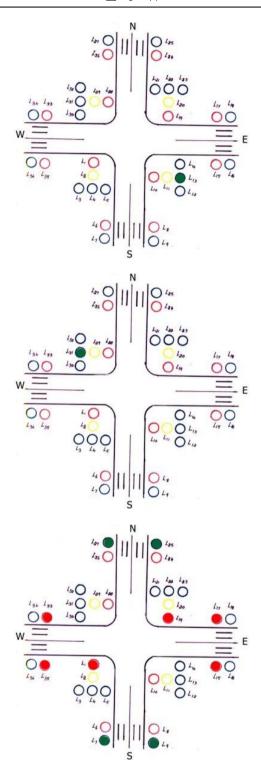
CIRCUIT DURGRIM

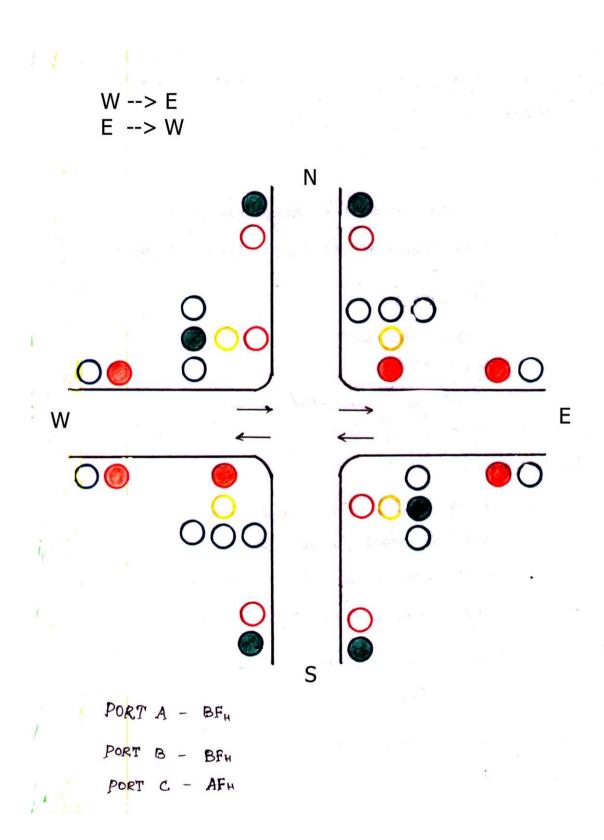
TRAFFIC LIGHT STIMULATOR



PROGRAM TRACE

LABEL	MNEMONICS	DESCRIPTION						
	MVI A,80 _H	Initializing the ports of the PPI 8255 as O/P ports by						
		writing the control word as $80_{\rm H}$.						
		DATA D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀						
		BITS 1 0 0 0 0 0 0 0						
		COMMENT I/O Mode0 PortA PortC Mode0 PortB PortC						
		mode						
		80 _H is moved to accumulator. REGISTERS A 80 XX F B XX XX C D XX XX E H XX XX L						
	OUT CWR	Control word specify the I/O function for each ports of 8255.						
REPEAT	MVI E,03 _H	Initialize E register with number of sequence.						
		REGISTERS						
		A 80 XX F B XX XX C D XX 03 E H XX XX L						

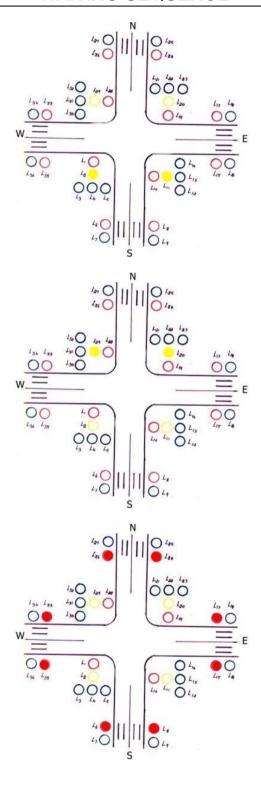

T	
LXI H,C10	Initialize the memory pointer at C100 _H .i.e. loads the 16-bit data in the register pair designated. REGISTERS A 80 XX F B XX XX C D XX 03 E H C1 00 L C100 _H is the memory pointer to the first data of the sequence. MEMORY C100 C101 C102 AF C103 EE C104 EE
NEXTSTAT MOV A	Memory pointer content BFH is moved to accumulator. REGISTERS A BF XX F B XX XX C D XX 03 E H C1 00 L LED no L14 L13 L12 L11 L5 L4 L3 L2 PORTA bits BFH 1 0 1 1 1 1 1 1 1 LED status Will GLOW Since Slow Negative logic when the portA bit is '1' then LED is in OFF state, when the portA bit is '0' then LED is in ON state.
OUT PO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
INX H	Increment the HL register pair by 1. The instruction views the contents of the HL registers as a 16-bit number. No flags are affected.


	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	C100 BF C101 BF C102 AF C103 EE C104 EE
MOV A, M	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
OUT PORTB	when the portB bit is '1' then LED is in OFF state, when the portB bit is '0' then LED is in ON state. L ₃₁ will glow
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
INX H	Increment the HL register pair by 1. REGISTERS A BF XX F B XX XX C D XX 03 E C1 02 C102 _H is the memory pointer to input data sequence.

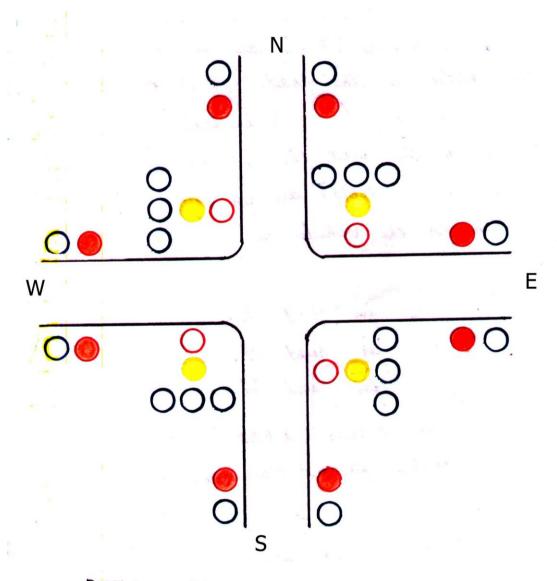
DELAY	programmer/user, delay was provided.
INX H	Increment the HL register pair by 1.
	REGISTERS A AF XX F B XX XX C D XX 03 E C1 03 L C103 _H is the memory pointer to input data sequence. MEMORY C100 BF C101 BF C102 AF C104 EE HL memory pointer
DCR E	E register was decremented by 1 indicating remaining number of sequence. REGISTERS A AF XX F B XX XX C D XX 02 H C1 03 L
JNZ NEXTSTAT	Now the next sequence is being looped.
JMP REPEAT	Once again the three sequence are executed.

 $W \rightarrow E$ $E \rightarrow W$

Now the next sequence is being traced.


When E=02 PORTS CONFIGURATION & DISPLAY.

LED no		L_{14}	L_{13}	L_{12}	L_{11}	L_5 L_4 L_3		L_3	L_2
PORTA	bits	1	1	1	0	1	1 1 1		0
EE_H									
LED stat	tus	Wil	l no	t	GLOW	Wil	Will not		GLOW
		glo.	W		Since	glo	W		Since
					Negative			Negative	
					logic	logic		logic	


LED no		L ₃₂ L ₃₁ L ₃₀		L_{29}	L_{23}	L_{23} L_{22}		L ₂₀	
PORTB	bits	1	1	1	0	0 1 1 1		0	
EE_H									
LED sta	itus	Wil	l no	t	GLOW	W Will not			GLOW
		glo.	W		Since	glo	W		Since
					Negative			Negative	
					logic				logic

LED	L_{33}	L_{34}	L_{24}	L_{25}	L_{15}	L_{16}	L_6	L_7	L_{28}	L_{10}	L_{19}	L_1
no	L_{35}	L_{36}	L_{26}	L_{27}	L_{17}	L_{18}	L_8	L_9				
LED glow	LED glow 1 0		1	0	1	0	1	0	0	0	1	1
PORTC bits	1		1		1		1		1	1	0	0
AC _H												
LED status	L ₃₃ ,:		L ₂₄ ,	L ₂₆ OW	GL ₁₅ ,		GL ₆	L ₈	Will	not	glow	

WAITING SEQUENCE

WAITING SEQUENCE

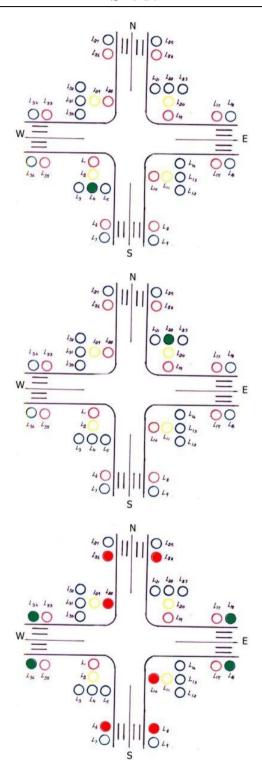
PORTA - EE,

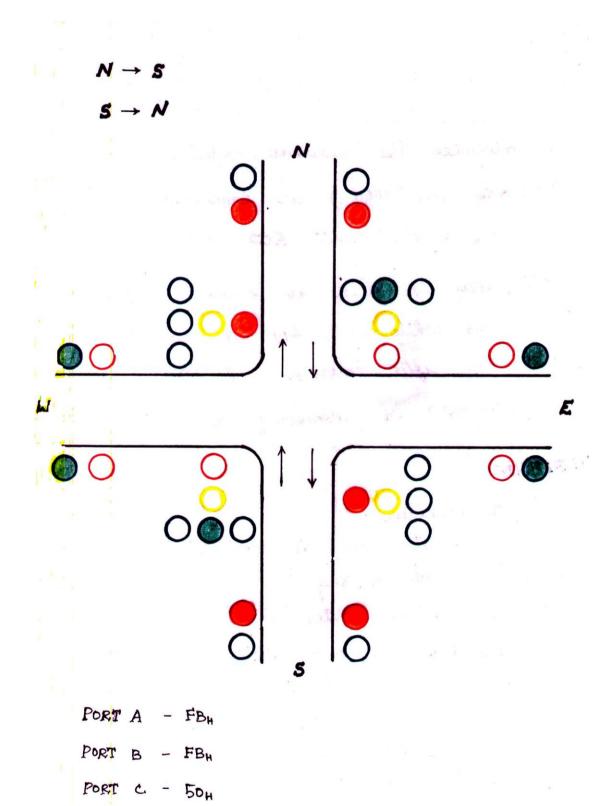
PORT B - GEH

PORT C - FC,

Now the next sequence is being traced.

When E=01 PORTS CONFIGURATION & DISPLAY.


LED no		L_{14}	L_{13}	L_{12}	L_{11}	L_5	\mathbb{L}_4	L_3	L_2
PORTA	bits	1	1	1	1	1	0	1	1
FB_H									
LED sta	tus	Wil	l no	t glo	WC		GLOW	Will	not
							Since	glo	W
							Negative		
							logic		


LED no		L_{32}	L_{31}	L ₃₀	L_{29}	L ₂₃	L_{22}	L_{21}	L_{20}
PORTB	bits	1	1	1	1	1	0	1	1
FB_H									
LED stat	tus	Wil	l no	t glo	WC		GLOW	Will	not
							Since	glo	W
							Negative		
							logic		

LED	L_{33}	L_{34}	L_{24}	L_{25}	L_{15}	L_{16}	L_6	L_7	L_{28}	L_{10}	L_{19}	L_1
no	L_{35}	L_{36}	L_{26}	L_{27}	L_{17}	L_{18}	L_8	L_9				
LED glow	1	0	1	0	1	0	1	0	0	0	1	1
PORTC bits	()	,	1	()	, ,	1	0	0	0	0
50 _H												
LED status	L ₃₄ ,	L ₃₆	L ₂₄ ,	L_{26}	L ₁₆ ,	L_{18}	L_6	L ₈	GL	OW	Wil	1
	GL	WC	GL	OW	GL	WC	GL	OW	_		not	
											glo	W

Thus the LEDs glow, when E=00 the sequence is terminated and next cycle starts.

N**→**S S **→**N

DELAY SUBPROGRAM

DELAY	LXI	Initialize the memory pointer at $C100_{H}$.i.e. loads the
	D,3000 _H	16-bit data in the register pair designated.
		REGISTERS
		A XX XX F
		B XX XX C
		D 30 00 E
		H XX XX L
		${ m C100_{H}}$ is the memory pointer to the first data of the
		sequence.
		MEMORY
		3000 XX HL memory pointer
		3001 XX MEMOLY POINCEL
		3002 XX
		3003 XX
		3004 XX
L2	MVI C, FF _H	Move FF_H immediately in to C register.
		REGISTERS
		A XX XX F
		B XX FF C
		D 30 00 E
		H XX XX L
- 1		
L1	DCR C	Move FF_H immediately in to C register.
		REGISTERS
		A XX XX F
		B XX FE C
		D 30 00 E
		H XX XX L
	JNZ L1	Loop until C = 00
	DCX D	Decrement the DE register pair by 1.
	DON D	REGISTERS
		A XX XX F
		B XX XX C
		D 2F FF E
		H XX XX L
		- XX XX -
	MOV A, D	D register content $2F_{\scriptscriptstyle H}$ is moved to accumulator.
		REGISTERS
		A 2F XX F
		B XX XX C
		D 2F FF E
		H XX XX L
	ORA E	OR the accumulator content with E register content
		FF => 1111 1111
		2F => 0010 1111
		1111 1111 => FF

	REGISTERS			3	
	A	FF	XX	F	
	В	XX	XX	С	
	D	2F	FF	E	
	Н	XX	XX	L	
JNZ L2	Only when DE=0000, this loop will end.				
RET	Return to main program				

EXECUTION

ADDRESS	DATA
C100	BF _H
C101	BF H
C102	AF _H
C103	EE H
C104	EE H
C105	FC H
C106	FB H
C107	FB H
C108	50 н

VERIFICATION

The LEDs on the interface glow according to the given sequence.

REFERENCE

- 1. Ramesh S.Gaonkar, Microprocessor Architecture, Programming, and Applications, Fourth Edition, Penram International Publishing (India), 2000.
- 2. S.Subathra, "Advanced Microprocessor Laboratory", Record work, Adhiparashakthi Engineering College, Melmaruvathur, October 2002
- 3. S.Subathra, "Programming in 8085 Microprocessor and its applications An Innovative Analysis", Technical Report, Adhiparashakthi Engineering College, Melmaruvathur, March 2003
- 4. Micro-85 EB, Technical Reference, Version 2.0, CAT #M85 EB-001 VI Microsystems Pvt. Ltd., Chennai.