STUDY OF MONITOR ROUTINE

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/in/deed.en or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

STUDY OF MONITOR ROUTINE

OBJECTIVE

To write an assembly language program to study of the monitor routines.

APPARATUS REQUIRED

- 8085 Microprocessor trainer kit
- Power supply

OUTPUT ROUTINE

DESCRIPTION

Starting address=05FC_H
Inputs:

(A)=displays flag;
0=use address field, 1=use data field.
(B)=dot flag;
0=no dot, 1=dot.
Destroys:

A, H, L registers & flags.

The Output routine is used in the keyboard mode to output the character of the display. Either 4 char or 2 char are output using the HL register as a pointer to the character. The output flag determines whether a dot appear with last character or not. The display table at 05FC_H is used to translate the code to the character to be displayed.

ALGORITHM

- 1. The inputs are given for both address field as well as data field.
- $2. For \ address \ field \ accumulator \ is \ given \ as \ 00_H \ and \ for \ data \ field, \ accumulator \ is \ given \ as \ 01_H.$
 - 3. The output routine is called using CALL statement.
 - 4. The output is displayed in data as well as address field.
 - 5. Stop the program execution.

ADDRESS FIELD ONLY

ADDRESS	LABEL	MNEMONICS	OPCODE/OPERAND	COMMENT
C100		LXI H,C500 _H	21 00 C5	Initialize HL register pair
C103		MVI A,00H	3E 00	Move
				immediately 00 _H
				in to accumulator
C105		MVI B,00 _H	06 00	Move
				immediately 00 _H
				to B register
C107		CALL OUTPUT	CD FC 05	Call OUTPUT
				monitor routine

C10A	HLT	76	Stop	the
			execution	

EXECUTION

ADDRESS	INPUT DATA
C500 _H	0D _H
C501 _H	0C _H
C502 _H	0B _H
C503 _H	$0A_{H}$

DISPLAY

A B	С	D		
-----	---	---	--	--

DATA FIELD ONLY

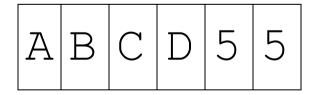
ADDRESS	LABEL	MNEMONICS	OPCODE/OPERAND	COMMENT	
C10B		LXI H,C504 _H	21 04 C5	Initialize register pair	HL
C10E		MVI A,01 _H	3E 01	Move immedi	ately
				01 _H in	to
				accumulator	
C110		MVI B,00H	06 00	Move immedi	ately
				00 _H to B regis	ter
C112		CALL OUTPUT	CD FC 05	Call OUT	PUT
				monitor routin	е
C115		HLT	76	Stop	the
				execution	

EXECUTION

ADDRESS	INPUT DATA
C504 _H	05 _H
C505 _H	05 _H

DISPLAY

	5	5
--	---	---


ADDRESS AND DATA FIELD

ADDRESS	LABEL	MNEMONICS	OPCODE/OPERAND	COMMENT
C116		LXI H,C500 _H	21 00 C5	Initialize HL
		,		register pair
C119		MVI A,00 _H	3E 00	Move immediately
		·		00 in to
				accumulator
C11B		MVI B,00 _H	06 00	Move immediately
				00 to B register
C11D		CALL OUTPUT	CD FC 05	Call OUTPUT
				monitor routine
C120		LXI H,C504 _H	21 04 C5	Initialize HL
				register pair
C123		MVI A,01 _H	3E 01	Move immediately
				00 in to
				accumulator
C125		MVI B,00 _H	06 00	Move immediately
				00 to B register
C127		CALL OUTPUT	CD FC 05	Call OUTPUT
				monitor routine
C12A		HLT	76	Stop the
				execution

EXECUTION

ADDRESS	INPUT DATA
C500 _H	0D _H
C501 _H	0C _H
C502 _H	0B _H
C503 _H	0A _H
C504 _H	05 _H
C505 _H	05 _H

DISPLAY

Addition Using UPDAD

DESCRIPTION

Starting address=06BC_H Inputs:

FFF7_H, FFF8_H=address to be displayed

(B)=dot flag,0=no dot,1=dot.

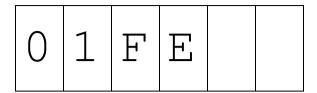
Destroys:

A, B, C, D, E, H & L flags.

 ${\tt UPDAD} \ is \ used \ in \ the \ keyboard \ and \ serial \ modes \ to \ update \ the \ address \ field \ display \ using \ the \ current \ address \ stored \ at \ location \ FFF7_H \ and \ FFF8_H.$

ALGORITHM

- 1. The two numbers are input for addition.
- 2.Add the numbers and display in LSB of address field.
- 3. The carry if present is displayed in MSB of address field.
- 4. This allotment of sum and carry is done using UPDAD.
- 5.stop the program execution.


ADDITION USING UPDAD

ADDRESS	LABEL	MNEMONICS	OPCODE/OPERAND	COMMENT
C150		LXI H,C200 _H	21 00 C2	Initialize HL register pair
C153		MVI A,M	7E	Move memory content to accumulator
C154		INX H	23	Increment the register pair by 1
C155		ADD M	86	Add the memory content with accumulator content
C156		STA FFF7 _H	32 F7 FF	Store the accumulator content at FFF7
C159		MVI A,00 _H	3E 00	Move immediately 00 in to accumulator
C15B		JNC L1	D2 5F C1	Jump if no carry to L1
C15E		INR A	3C	Increment the register content by 1
C15F	L1	STA FFF8 _H	32 F8 FF	Store the accumulator content at FFF8
C162		CALL UPDAD	CD BC 06	Call UPDAD monitor routine
C165		HLT	76	Stop the execution

EXECUTION

ADDRESS	INPUT DATA	OUTPUT DATA
C200 _H	FF_{H}	
C201 _H	FF_{H}	
FFF7 _H		FE _H
FFF8 _H		01 _H

DISPLAY

Counting number Of Zeros Using UPDDT

DESCRIPTION

Starting address=06D3_H

Inputs:

FFF9_H=data to be displayed

(B)=dot flag,0=no dot,1=dot.

Destroys:

A, B, C, D, E, H, L registers & flags

 ${\tt UPDDT}$ is used in the keyboard and serial modes to update data field display using the current data at location FFF9 $_{\rm H}.$

ALGORITHM

- 1.Enter the total number of inputs.
- 2.Accumulator is made 0 and the number is added with it.
- 3.If the sum is zero, increment the counter register.
- 4. Else go to the next number and proceed from step 2.
- 5. Store the content of count register after scanning all inputs.
- 6. Output the number of zero in the data field.
- 7.Stop the program execution.

COUNTING NUMBER OF ZEROS USING UPDDT

ADDRESS	LABEL	MNEMONICS	OPCODE/OPERAND	COMMENT
C130		LXI H,C300 _H	21 00 C3	Initialize HL register pair
C133		MOV C,M	4E	Move memory content to C register
C134		MVI B,00H	06 00	Move immediately 00 _H to B register
C136	REPEAT	XRA A	AF	Exclusive OR the accumulator content
C137		INX H	23	Increment the register content by 1
C138		ADD M	86	Add the memory content with accumulator
C139		JNZ COUNT	C2 3D C1	Jump if not zero to COUNT

C13C		INR B	04	Increment the
				register pair by 1
C13D	COUNT	DCR C	0D	Decrement the
				register pair by 1
C13E		JNZ REPEAT	C2 36 C1	Jump if not zero
				to REPEAT
C141		MOV A,B	78	Move B register
				content to
				accumulator
C142		STA FFF9 _H	32 F9 FF	Store
				accumulator
				content at FFF9 _H
C145		CALL UPDDT	CD D3 06	Call UPDDT
				monitor routine
C148		HLT	76	Stop the
				execution

EXECUTION

ADDRESS	INPUT DATA	OUTPUT DATA
C300 _H	05 _H	
C301 _H	02 _H	
C302 _H	00_{H}	
C303 _H	$00_{ m H}$	
C304 _H	01 _H	
C305 _H	$00_{ m H}$	
FFF9 _H		03 _H

DISPLAY

E	0	3
---	---	---

REFERENCE

- 1. Ramesh S.Gaonkar, Microprocessor Architecture, Programming, and Applications, Fourth Edition, Penram International Publishing (India), 2000.
- 2. S.Subathra, "Advanced Microprocessor Laboratory", Record work, Adhiparashakthi Engineering College, Melmaruvathur, October 2002
- 3. S.Subathra, "Programming in 8085 Microprocessor and its applications An Innovative Analysis", Technical Report, Adhiparashakthi Engineering College, Melmaruvathur, March 2003
- 4. Micro-85 EB, User Manual, Version 3.0, CAT #M85 EB-002, VI Microsystems Pvt. Ltd., Chennai.