BY SUBATHRA S

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/in/deed.en or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

ELEVATOR INTERFACE

OBJECTIVE

To write an assembly language program to interface an elevator with 8085 Microprocessor kit

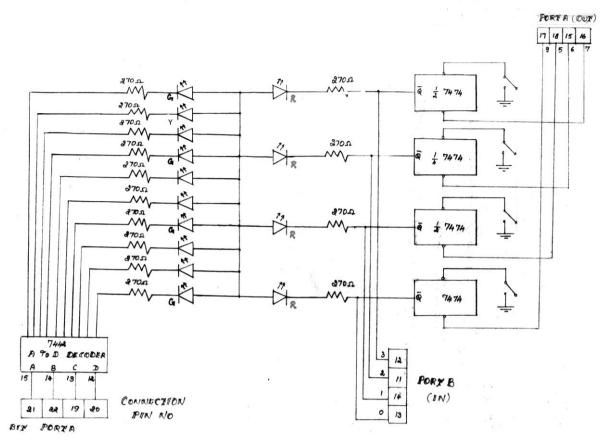
APPARATUS REQUIRED

- Single port Microcomputer kit (ALS kit).
- Elevator interfacing kit.
- Power Supply.
- Flat Ribbon Cable.

OPERATING INSTRUCTION

A program that illustrates the function of elevator interfaces returns. The elevator starts at the ground floor and makes up the loop. The request are sensed each time the lift position is changed and the presence of request is displayed as in the address field once the elevator has moved to the top all the request are cleared. The speed of movement of the elevator can be changed by varying the number of states times the delay routine is called with some changes in the software power is applied to the interface through a polarized connection.

DESCRIPTION


An elevator presents a typical problem to logical designs. A number of situation like the occurrence of simulation requests are frequently encountered. The use of microcomputer enables complex simulation exercise to be performed.

The control and operation of an elevator interfacing functioning within a building having four floors is simulated by this interface. A key and corresponding LED indicated serve as a request button and request indicator (for simplicity the request button within the elevator has not been included).

A row of LED's indicates the position of the elevator within the shaft. The green LED's when indicate that elevator is at a floor. The serving of a request (the appearance of an elevator at a specific floor) can be indicated by clearing the request (turning off the request indicates).

A four line to ten line decoder is used to specify the location of the elevator within the shaft when the inputs of the decoder are requested through binary codes corresponding to (0-9) with a time interval between transistors, the elevator is seen to move. Two dual OFF are used to sense requests and output the states. A request is cleared through the clear input of FIF.

CIRCUIT DIAGRAM

ASSEMBLY LANGUAGE PROGRAM

ADDRESS	LABEL	MNEMONICS	OPCODE/OPERAND
C100		MVI A,82 _H	3E 82
C102		OUT CWR	D3 DB
C104		MVI B,00 _H	06 00
C106		MOVA,B	78
C107		ORI F0 _H	F6 F0
C108		OUT PORTA	D3 D8
C10B	LOOP1	LXI H,C180 _H	21 80 C1
C10E	LOOP2	IN PORTB	DB D9
C110		ORI F0 _H	F6 F0
C112		MOV C,A	4F
C113		SUI FF _H	D6 FF
C115		JZ LOOP2	CA 0E C1
C118	LOOP3	MOV A,C	79
C119		RAR	1F
C11A		MOV C,A	4F
C11B		JNC DECODE	D2 22 C1
C11E		INX H	23
C11F		JMP LOOP3	C3 18 C1
C122	DECODE	CALL DELAY	CD 49 C1
C125		MOV A,M	7E

C126		SUB B	90
C127		JC DOWN	DA 36 C1
C12A		JZ LOOP4	CA 3F C1
C12D		INR B	04
C12E		MOV A,B	78
C12F		ORI F0 _H	F6 F0
C131		OUT PORTA	D3 D8
C133		JNZ DECODE	C2 22 C1
C136	DOWN	DCR B	05
C137		MOV A,B	78
C138		ORI F0 _H	F6 F0
C13A		OUT PORTA	D3 D8
C13C		JMP DECODE	C3 22 C1
C13F	LOOP4	MVI A,05 _H	3E 05
C141		ADD L	85
C142		MOV L,A	6F
C143		MOV A,M	7E
C144		OUT PORTA	D3 D8
C146		JMP LOOP1	C3 0B C1
C149	DELAY	MVI D,04 _H	16 04
C14B	DL1	MVI E,FF _H	1E FF
C14D	DL2	MVI C,FF _H	0E FF
C14F	DL3	DCR C	0D
C150		JNZ DL3	C2 4F C1
C153		DCR E	1D
C154		JNZ DL2	C2 4D C1
C157		DCR D	15
C158		JNZ DL1	C2 4B C1
C15B		RET	C9

EXECUTION

ADDRESS	DATA
C180 _H	00 _H
C181 _H	03 _H
C182 _H	06 _H
C183 _H	09 _H
C184 _H	00 _H
C185 _H	E0 _H
C186 _H	D3 _H
C187 _H	B6 _H
C188 _H	79 _H

REFERENCE

- 1. Ramesh S.Gaonkar, Microprocessor Architecture, Programming, and Applications, Fourth Edition, Penram International Publishing (India), 2000.
- 2. S.Subathra, "Advanced Microprocessor Laboratory", Record work, Adhiparashakthi Engineering College, Melmaruvathur, October 2002