Addition of two 8-bit numbers without carry

By, Subathra S

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/in/deed.en or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

ADDITION OF TWO 8 -BIT NUMBERS WITHOUT CARRY

OBJECTIVE

To write a assembly language program to add two 8-bit numbers and display the value.

INDIRECT ADDRESSING MODE

ASSEMBLY LANGUAGE PROGRAM

(Note: In assembly language program mentioned below, coloumn 1 represents the address, coloumn 2 represents Mnemonics, coloumn 3 represents Hex code and coloumn 4 represents the description.)

C000 LXI H C100 21 ; Load the address of the data(i.e.C100) in
C001 00 ; memory location to register pair HL
C002 C1 ; immediately
C003 MOV A M 7E ; Move the content of memory location(AddendInput data) into the accumulator (C100) $=>(A)=03$
C004 INX H 23 ; Increment the HL register pair and it points to augend (Input data) $(C 100)+(0001)=>(C 101)=0 A$
C005 ADD M
86 ; Add the content of memory location(augend) with accumulator content (addend) $(C 101)+(A)=>(A)$

0A $+03=>0 D$
C006 INX H 23 ; Increment the HL register pair
(C101) $+(0001)=>(C 102)$
C007 MOV M A 77 ; Move the accumulator content (Sum - Output data) to the memory location
(A) $=>(C 102)=0 D$

C008 HLT
76 ; Halt the execution

EXECUTION

(Note: In the below mentioned data, coloumn 1 represents the address, coloumn 2 represents the data, coloumn 3 represents description.)

C100 03 ; Addend(Input data)
C101 0A ; Augend(Input data)
C102 0D ; Sum(Output data)

PROGRAM TRACE

Addr	MC	Mnemonic	A	B	C	D	E	H	L	SP	Flaq Word
			00	00	00	00	00	00	00	0000	00000000
C000	21	LXIH C100	00	00	00	00	00	C1	00	0000	00000000
C003	7E	MOVAM	03	00	00	00	00	C1	00	0000	00000000
C004	23	INXH	03	00	00	00	00	C1	01	0000	00000000
C005	86	ADD M	OD	00	00	00	00	C1	01	0000	00000000
C006	23	INXH	OD	00	00	00	00	C1	02	0000	00000000
C007	77	MOVMA	OD	00	00	00	00	C1	02	0000	00000000
C008	76	HLT	OD	00	00	00	00	C1	02	0000	0000000

FLAG WORD

(Note: The final content of the flag)

S	Z	x	Ac	x	P	x	CY
0	0	0	0	0	0	0	0

DIRECT ADDRESSING MODE

ASSEMBLY LANGUAGE PROGRAM

```
C200 LDA 1000 3A ; Load the Accumulator with Addend(Input data)
C201
C202
C203 MOV B A
00 ; (1000) => (A) = 08
10;
4 7 \text { ; Move Accumulator content (Addend) to B}
Register
(A) => (B) = 08
C204 LDA 1001 3A ; Load the Accumulator with Augend(Input data)
C205
01 ; (1001) => (A) = 07
10 ;
C207 ADD B
8 0 ~ ; ~ A d d ~ t h e ~ A c c u m u l a t o r ~ c o n t e n t ~ w i t h ~ B ~ r e g i s t e r ~
                                    Content
                                    (A) + (B) => (A)
                                    07 + 08 => 0F
C208 STA 1400 32 ; Store the sum in the Accumulator
C209 00 ; (A) => (1400) = 0F
C20A 14 ;
C20B HLT 76 ; Halt the execution
```


EXECUTION

```
1000 08 ; Addend(Input data)
1 0 0 1 0 7 ~ ; ~ A u g e n d ( I n p u t ~ d a t a )
1400 0F ; Sum(Output data)
```


PROGRAM TRACE

	MC	Mnemonic	A	B	C	D	E	H	L	SP	Flaq W
			00	00	00	00	00	00	00	0000	0000000
00	34	LDA 1000	08	00	00	00	00	00	00	0000	00000
C203	47	MOVBA	08	08	00	00	00	00	00	0000	00000000
C204	34	LDA 100	07	08	00	00	00	00	00	0000	000
C207	80	ADD B	OF	08	00	00	00	00	00	0000	0000
C208	32	STA 1	OF	08	00	00	00	00	00	0000	000001
C20B	76	HLT	OF	08	00	00	00	00	00	000	000

FLAG WORD

S	Z	x	Ac	x	P	x	$\mathrm{C} \boldsymbol{y}$
0	0	0	0	0	1	0	0

REFERENCE

1. Ramesh S.Gaonkar, "Microprocessor Architecture, Programming, and Applications", Fourth Edition, Penram International Publishing (India), 2000 .
2. S.Subathra, "Microprocessor Laboratory", Record work, Adhiparashakthi Engineering College, Melmaruvathur, March 2001
3. S.Subathra, "Programming in 8085 Microprocessor and its applications - An Innovative Analysis", Technical Report, Adhiparashakthi Engineering College, Melmaruvathur, March 2003
4. Micro-85 EB, User Manual, Version - 3.0, CAT \#M85 EB-002, VI Microsystems Pvt. Ltd., Chennai.
5. Micro85 simulation software, Infotech Solutions, Calcutta.
