Addition of two 8-bit numbers without carry

By, Subathra S

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/in/deed.en or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

ADDITION OF TWO 8-BIT NUMBERS WITHOUT CARRY

OBJECTIVE

To write a assembly language program to add two 8-bit numbers and display the value.

INDIRECT ADDRESSING MODE

ASSEMBLY LANGUAGE PROGRAM

(Note: In assembly language program mentioned below, coloumn 1 represents the address, coloumn 2 represents Mnemonics, coloumn 3 represents Hex code and coloumn 4 represents the description.)

C000	LXI	Η	C100	21	;	Load the address of the data(i.e.C100) in
C001				00	;	memory location to register pair HL
C002				C1	;	immediately
C003	MOV	А	М	7E	;	Move the content of memory location (Addend-
						Input data) into the accumulator
						(C100) => (A) = 03
C004	INX	Η		23	;	Increment the HL register pair and it
						points to augend (Input data)
						(C100) + (0001) => (C101) = 0A
C005	ADD	М		86	;	Add the content of memory location(augend)
						with accumulator content (addend)
						(C101) + (A) => (A)
						0A + 03 => 0D
C006	INX	Η		23	;	Increment the HL register pair
						(C101) + (0001) => (C102)
C007	MOV	М	A	77	;	Move the accumulator content(Sum - Output
						data) to the memory location
						(A) => (C102) = 0D
C008	HLT			76	;	Halt the execution

EXECUTION

(Note: In the below mentioned data, coloumn 1 represents the address, coloumn 2 represents the data, coloumn 3 represents description.)

C100 03 ; Addend(Input data) C101 0A ; Augend(Input data) C102 0D ; Sum(Output data)

PROGRAM TRACE

Addr	MC	Mnemonic	A	В	С	D	Е	Н	L	SP	Flag Word
			00	00	00	00	00	00	00	0000	0000 0000
C000	21	LXI H C100	00	00	00	00	00	C1	00	0000	0000 0000
C003	7E	MOVAM	03	00	00	00	00	C1	00	0000	0000 0000
C004	23	INX H	03	00	00	00	00	C1	01	0000	0000 0000
C005	86	ADD M	0D	00	00	00	00	C1	01	0000	0000 0000
C006	23	INX H	0D	00	00	00	00	C1	02	0000	0000 0000
C007	77	MOV M A	0D	00	00	00	00	C1	02	0000	0000 0000
C008	76	HLT	0D	00	00	00	00	C1	02	0000	0000 0000

FLAG WORD

(Note: The final content of the flag)

S	Ζ	×	Ac	×	Ρ	x	Cγ
0	0	0	0	0	0	0	0

DIRECT ADDRESSING MODE

ASSEMBLY LANGUAGE PROGRAM

C200	LDA	1000	3A ;	Load the Accumulator with Addend(Input data)
C201			00;	$(1000) \implies (A) = 08$
C202			10 ;	
C203	MOV	ΒA	47;	Move Accumulator content (Addend) to B Register (A) => (B) = 08
C204 C205 C206	LDA	1001	3A ; 01 ; 10 ;	Load the Accumulator with Augend(Input data) $(1001) \Rightarrow (A) = 07$
C207	ADD	В	80;	Add the Accumulator content with B register Content (A) + (B) => (A) 07 + 08 => 0F
C208 C209 C20A	STA	1400	32 ; 00 ; 14 ;	Store the sum in the Accumulator (A) => (1400) = OF
C20B	HLT		76 ;	Halt the execution

EXECUTION

1000 08 ; Addend(Input data)
1001 07 ; Augend(Input data)
1400 0F ; Sum(Output data)

PROGRAM TRACE

Addr	MC	Mnemonic	A	В	С	D	E	Н	L	SP	Flag Word
			00	00	00	00	00	00	00	0000	0000 0000
C200	ЗA	LDA 1000	08	00	00	00	00	00	00	0000	0000 0000
C203	47	MOV B A	08	08	00	00	00	00	00	0000	0000 0000
C204	3A	LDA 1001	07	08	00	00	00	00	00	0000	0000 0000
C207	80	ADD B	0F	08	00	00	00	00	00	0000	0000 0100
C208	32	STA 1400	0F	08	00	00	00	00	00	0000	0000 0100
C20B	76	HLT	OF	08	00	00	00	00	00	0000	0000 0100

FLAG WORD

S	Ζ	×	Ac	×	Ρ	x	Су
0	0	0	0	0	1	0	0

REFERENCE

- Ramesh S.Gaonkar, "Microprocessor Architecture, Programming, and Applications", Fourth Edition, Penram International Publishing (India), 2000.
- 2. S.Subathra, "Microprocessor Laboratory", Record work, Adhiparashakthi Engineering College, Melmaruvathur, March 2001
- 3. S.Subathra, "Programming in 8085 Microprocessor and its applications - An Innovative Analysis", Technical Report, Adhiparashakthi Engineering College, Melmaruvathur, March 2003
- 4. Micro-85 EB, User Manual, Version 3.0, CAT #M85 EB-002, VI Microsystems Pvt. Ltd., Chennai.
- 5. Micro85 simulation software, Infotech Solutions, Calcutta.